• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login ▼
    • Login
    • Register
  • العربیة
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
International Design Journal
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 13 (2023)
Issue Issue 2
Issue Issue 1
Volume Volume 12 (2022)
Volume Volume 11 (2021)
Volume Volume 10 (2020)
Volume Volume 9 (2019)
Volume Volume 8 (2018)
Volume Volume 7 (2017)
Volume Volume 6 (2016)
Volume Volume 5 (2015)
Volume Volume 4 (2014)
Nahla, D. (2023). Optimal Localization of Wind Turbines Using the Weighted Overlay Model by Application to the Red Sea Governorate by ArcMap 10.3 Program. International Design Journal, 13(2), 119-130. doi: 10.21608/idj.2023.288305
Donia Fakhri Abdel Monem Nahla. "Optimal Localization of Wind Turbines Using the Weighted Overlay Model by Application to the Red Sea Governorate by ArcMap 10.3 Program". International Design Journal, 13, 2, 2023, 119-130. doi: 10.21608/idj.2023.288305
Nahla, D. (2023). 'Optimal Localization of Wind Turbines Using the Weighted Overlay Model by Application to the Red Sea Governorate by ArcMap 10.3 Program', International Design Journal, 13(2), pp. 119-130. doi: 10.21608/idj.2023.288305
Nahla, D. Optimal Localization of Wind Turbines Using the Weighted Overlay Model by Application to the Red Sea Governorate by ArcMap 10.3 Program. International Design Journal, 2023; 13(2): 119-130. doi: 10.21608/idj.2023.288305

Optimal Localization of Wind Turbines Using the Weighted Overlay Model by Application to the Red Sea Governorate by ArcMap 10.3 Program

Article 8, Volume 13, Issue 2 - Serial Number 50, March and April 2023, Page 119-130  XML PDF (2.63 MB)
Document Type: Original Article
DOI: 10.21608/idj.2023.288305
Author
Donia Fakhri Abdel Monem Nahla
Lecturer, Environmental Planning Department, Faculty of Urban and Regional Planning, Cairo University (Egypt),
Abstract
Egypt currently has a high reliance on wind energy, as it only accounts for 12% of the total 20% of electricity produced by renewable sources. Due to the availability of the necessary resources and sites to establish wind energy at Egypt's level, it is necessary to give wind energy priority and increase dependence on it. To do this, it is necessary to develop a model for determining the regions that are suitable for locating wind farms, taking into account a number of variables, in order to make effective use of this resource and use it as a guide when locating wind energy projects in Egypt in the future, which aims to reduce greenhouse gas emissions to address the issue of climate change and progressively wean the world off of reliance on conventional energy sources by reaching the proportion of the contribution of renewable energy to 42% of the total electrical energy Product in 2035  (Mariel, Meyerhoff , & Hess, 2014). Through a proposed form, the research will highlight the key factors to take into account when choosing wind turbine locations, and the GIS application will be used to create the form and eliminate any maps.
Keywords
Renewable energy; Wind energy; Wind turbines localization; Red Sea Governorate; the Weighted Overlay model; GIS modeling
Supplementary Files
download 119-130-13-2-Donia-abs.pdf
References
1-   Bennui, A., Rattanamanee, P., Puetpaiboon, U., Phukpattaranont, P., & Chetpattananondh, K. (2007). PSU-UNS International Conference on Engineering and Environment - ICEE-2007. Thailand: Prince of Songkla University, Faculty of Engineering. available at: http://www.ftn.uns.ac.rs/n1119542145.

2-   Crichton, F., & J.Petrie, K. (2015). Health complaints and wind turbines: The efficacy of explaining the nocebo response to reduce symptom reporting. Environmental Research, 140, 449-455. available at: https://www.fmhs.auckland.ac.nz/assets/fmhs/som/psychmed/petrie/docs/2015%20Explain %20the%20nocebo%20response.pdf.

3-   Effat, H. (2017). Mapping Potential Wind Energy Zones in Suez Canal Region, Using Satellite Data and Spatial Multicriteria Decision Models. Journal of Geoscience and Environment Protection(5), 46-61.available at: https://www.researchgate.net/publication/321300616_Mapping_Potential_Wind_ Energy_ Zones _in_Suez_Canal_Region_Using_Satellite_Data_and_Spatial_Multi-criteria_Decision_Models#fullTextFileContent.

4-   El-Ahmar, M., El-Sayed, A.-H., & Hemeida, A. (2017). Evaluation of Factors affecting Wind Turbine Output Power. 2017 Nineteenth International Middle East Power Systems Conference (MEPCON). Egypt: Menoufia University. available at: https://ieeexplore.ieee.org/document/8301377.

5-   Hanning C. (2009). Sleep disturbance and wind turbine noise. available at: https://docs.wind-watch.org/Hanning-sleep-disturbance-wind-turbine-noise.pdf.

6-   International Energy Agency report, I. (2010). vision of energy technologies. available at: https://www.iea.org/.

7-   Kazak, J., Hoof, J., & Szewranski, S. (2017). Challenges in the wind turbines location process in Central Europe – The use of spatial decision support systems. Renewable and Sustainable Energy Reviews, 76, 425-433. available at: https://www.sciencedirect.com/science/article/abs/pii/S136403211730357X.

8-   Kumar, A., Khan, M., & Pandey, B. (2018). Wind Energy: A Review Paper. Gyancity Journal of Engineering and Technology, 29-37. available at: https://www.researchgate.net/publication/326340286_Wind_Energy_A_Review_Paper.

9-   mahmoud, k., beda, m., & ashraf, a. (2012). A report on the winds of change in the global and Arab energy systems, Electricity from the wind. Regional Center for Renewable Energy and Energy Efficiency, available at: http://www.abhatoo.net.ma/content/download/77142/1714639/ version/1/file/%D8%B1%D9%8A%D8%A7%D8%AD+%D8%A7%D9%84%D8%AA%D8%BA%D9%8A%D9%8A%D8%B1+%D9%81%D9%8A+%D8%A3%D9%86%D8%B8%D9%85%D8%A.

10- Mariel, P., Meyerhoff , J., & Hess, S. (2014). Heterogeneous preferences toward landscape externalities of wind turbines -combining choices and attitudes in a hybrid model. Renewable and Sustainable Energy Reviews.

11- Mentis, D., Hermann, S., Howells, M., Welsch, M., & Siyal, S. (2015). Assessing the technical wind energy potential in Africa a GIS-based approach. Renewable Energy, 83, Pages 110-125. available at: https://www.sciencedirect.com/science/article/abs/pii/S0960148115002633.

12- Perrot, R., & Filippov, S. (2011). Localisation Strategies of Firms in Wind Energy Technology Development. Journal on Innovation and Sustainability RISUS, 2, pages:2:12. available at: https://www.researchgate.net/publication/46433650_Localisation_Strategies_of_Firms_in_Wind_Energy_Technology_Development.

13- Shiyan, L., Lei, M., Chuanwen, J., Hongling, L., & Yan, Z. (2009). A review on the forecasting of wind speed and generated power. Renewable and Sustainable Energy Reviews, 13(4), Pages 915-920. available at: https://doi.org/10.1016/j.rser.2008.02.002.

14- Tegou, L.-I., Polatidis, H., & Haralambopoulos, D. (2010). Environmental Management Framework for Wind Farm Siting: Methodology and Case Study. Journal of Environmental Management(91), 2134-2147.

15- Wang, J., Wenyu, Z., Wang, J., Han, T., & Kong, L. (2014). A novel hybrid approach for wind speed prediction. Information Sciences, 273, Pages 304-318. available at: https://doi.org/10.1016/j.ins.2014.02.159.

16-         Y.Himri, S.Rehman, B.Draoui, & S.Himri. (2007). Wind power potential assessment for three locations in Algeria. Renewable and Sustainable Energy Reviews, 12(9), 2495-2504.

Statistics
Article View: 36
PDF Download: 29
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.