1- 2009 UNISDR terminology on disaster risk reduction | UNDRR. (n.d.). Retrieved January 28, 2025, from https://www.undrr.org/publication/2009-unisdr-terminology-disaster-risk-reduction
2- Afsari, R., Nadizadeh Shorabeh, S., Bakhshi Lomer, A. R., Homaee, M., & Arsanjani, J. J. (2023a). Using Artificial Neural Networks to Assess Earthquake Vulnerability in Urban Blocks of Tehran. Remote Sensing, 15(5), 1248. https://doi.org/10.3390/rs15051248
3- Afsari, R., Nadizadeh Shorabeh, S., Bakhshi Lomer, A. R., Homaee, M., & Arsanjani, J. J. (2023b). Using artificial neural networks to assess earthquake vulnerability in urban blocks of Tehran. Remote Sensing, 15(5), 1248.
4- Alam, M. S., & Haque, S. M. (2022). Multi-dimensional earthquake vulnerability assessment of residential neighborhoods of Mymensingh City, Bangladesh: A spatial multi-criteria analysis based approach. Journal of Urban Management, 11(1), 37–58.
5- Alizadeh, M., Ngah, I., Hashim, M., Pradhan, B., & Pour, A. B. (2018). A hybrid analytic network process and artificial neural network (ANP-ANN) model for urban earthquake vulnerability assessment. Remote Sensing, 10(6), 975.
6- Alizadeh, M., Zabihi, H., Rezaie, F., Asadzadeh, A., Wolf, I. D., Langat, P. K., Khosravi, I., Beiranvand Pour, A., Mohammad Nataj, M., & Pradhan, B. (2021). Earthquake vulnerability assessment for urban areas using an ann and hybrid swot-qspm model. Remote Sensing, 13(22), 4519.
7- Centre for Research on the Epidemiology of Disasters (CRED), U. C. de L. (UCLouvain), U. S. A. for I. D. (USAID). (2023). 2022 Disasters in numbers | PreventionWeb. https://www.preventionweb.net/publication/2022-disasters-numbers
8- Columbro, C., Eudave, R. R., Ferreira, T. M., Lourenço, P. B., & Fabbrocino, G. (2022). On the use of web mapping platforms to support the seismic vulnerability assessment of old urban areas. Remote Sensing, 14(6), 1424.
9- DFID. (2012). Multi-Hazard Disaster Risk Assessment (v2).
10- Diaz-Sarachaga, J. M., & Jato-Espino, D. (2020). Analysis of vulnerability assessment frameworks and methodologies in urban areas. Natural Hazards, 100(1), 437–457. https://doi.org/10.1007/s11069-019-03805-y
11- Dilley, M., & Boudreau, T. E. (2001). Coming to terms with vulnerability: a critique of the food security definition. Food Policy, 26(3), 229–247.
12- Disaster Classification System | EM-DAT Documentation. (n.d.). Retrieved January 29, 2025, from https://doc.emdat.be/docs/data-structure-and-content/disaster-classification-system/
13- Duzgun, H. S. B., Yucemen, M. S., Kalaycioglu, H. S., Celik, K., Kemec, S., Ertugay, K., & Deniz, A. (2011). An integrated earthquake vulnerability assessment framework for urban areas. Natural Hazards, 59, 917–947.
14- Eastman, J. R. (1999). Multi-criteria evaluation and GIS. Geographical Information Systems, 1(1), 493–502.
15- EM-DAT. (2023). EM-DAT - The international disaster database. https://www.emdat.be/
16- FEMA. (n.d.). Natural Hazards | National Risk Index. Retrieved July 13, 2023, from https://hazards.fema.gov/nri/natural-hazards
17- FEMA, P. (2015). 154: Rapid visual screening of buildings for potential seismic hazards: a handbook. Federal Emergency Management Agency Report, FEMA. P, 154.
18- Fordham, M., Lovekamp, W. E., Thomas, D. S. K., & Phillips, B. D. (2013). Understanding social vulnerability. Social Vulnerability to Disasters, 2, 1–29.
19- Freire, S., & Aubrecht, C. (2012). Integrating population dynamics into mapping human exposure to seismic hazard. Natural Hazards and Earth System Sciences, 12(11), 3533–3543.
20- Frigerio, I., Ventura, S., Strigaro, D., Mattavelli, M., De Amicis, M., Mugnano, S., & Boffi, M. (2016). A GIS-based approach to identify the spatial variability of social vulnerability to seismic hazard in Italy. Applied Geography, 74, 12–22. https://doi.org/10.1016/J.APGEOG.2016.06.014
21- Garatwa, W., & Bollin, C. (2002). Disaster risk management: Working concept. In Disaster risk management: Working concept (p. 48).
22- Global assessment report on disaster risk reduction 2019 | UNDRR. (n.d.). Retrieved January 29, 2025, from https://www.undrr.org/publication/global-assessment-report-disaster-risk-reduction-2019
23- Grünthal, G., & Schwarz, J. (n.d.). European Macroseismic Scale 1998 EMS-98 Editor.
24- Hamdy, O., & Alsonny, Z. (2022). Assessing the Impacts of Land Use Diversity on Urban Heat Island in New Cities in Egypt, Tiba City as a Case Study. International Design Journal, 12(3), 93–103. https://doi.org/10.21608/idj.2022.128425.1040
25- Hamdy, O., Gaber, H., Abdalzaher, M. S., & Elhadidy, M. (2022). Identifying exposure of urban area to certain seismic hazard using machine learning and GIS: A case study of greater Cairo. Sustainability, 14(17), 10722.
26- Hamdy, O., Zhao, S., A. Salheen, M., & Eid, Y. (2016). Identifying the Risk Areas and Urban Growth by ArcGIS-Tools. Geosciences, 6(4), 47. https://doi.org/10.3390/geosciences6040047
27- Hanberry, B. B. (2023). Urban Land Expansion and Decreased Urban Sprawl at Global, National, and City Scales during 2000 to 2020. Ecosystem Health and Sustainability, 9, 0074. https://doi.org/10.34133/ehs.0074
28- Hardoy, J., & Satterthwaite, D. (2023). Urban Growth as a Problem. In The Earthscan Reader in Sustainable Development (pp. 197–199). Routledge. https://doi.org/10.4324/9781003403432-28
29- Harrison, C. G., & Williams, P. R. (2016). A systems approach to natural disaster resilience. Simulation Modelling Practice and Theory, 65, 11–31. https://doi.org/https://doi.org/10.1016/j.simpat.2016.02.008
30- Hosseinpour, V., Saeidi, A., Nollet, M.-J., & Nastev, M. (2021). Seismic loss estimation software: A comprehensive review of risk assessment steps, software development and limitations. Engineering Structures, 232, 111866. https://doi.org/https://doi.org/10.1016/j.engstruct.2021.111866
31- Hua, W., Ye, J., & Ye, J. (2023). Resilience assessment and seismic risk assessment of reticulated shell structures considering multiple uncertainties. Structures, 55, 1584–1594. https://doi.org/10.1016/J.ISTRUC.2023.06.129
32- Kassem, M. M., Mohamed Nazri, F., & Noroozinejad Farsangi, E. (2020). The seismic vulnerability assessment methodologies: A state-of-the-art review. Ain Shams Engineering Journal, 11(4), 849–864. https://doi.org/10.1016/J.ASEJ.2020.04.001
33- Labaka, L., Maraña, P., Giménez, R., & Hernantes, J. (2019). Defining the roadmap towards city resilience. Technological Forecasting and Social Change, 146, 281–296. https://doi.org/https://doi.org/10.1016/j.techfore.2019.05.019
34- Lee, S., Yoo, C., Im, J., Cho, D., Lee, Y., & Bae, D. (2023). An innovative method to investigate the altering urban thermal environment by dynamic land cover change: A case study of Suwon, Republic of Korea. EGU General Assembly Conference Abstracts, EGU-13594.
35- Li, S.-Q. (2023). Empirical resilience and vulnerability model of regional group structure considering optimized macroseismic intensity measure. Soil Dynamics and Earthquake Engineering, 164, 107630. https://doi.org/https://doi.org/10.1016/j.soildyn.2022.107630
36- Li, X., & Gong, P. (2016). Urban growth models: progress and perspective. Science Bulletin, 61(21), 1637–1650. https://doi.org/https://doi.org/10.1007/s11434-016-1111-1
37- Munich Re. (2023). Climate change and La Niña driving losses: the natural disaster figures for 2022 | Munich Re. https://www.munichre.com/en/company/media-relations/media-information-and-corporate-news/media-information/2023/natural-disaster-figures-2022.html
38- Nations, U. (2014). World urbanization prospects: The 2014 revision, highlights. department of economic and social affairs. Population Division, United Nations, 32, 1–517. https://population.un.org/wup/publications/files/wup2014-report.pdf
39- Nations, U. (2018). The World’s Cities in 2018: Data Booklet. https://doi.org/10.18356/C93F4DC6-EN
40- Noby, M., Elattar, M. E., & Hamdy, O. (2023). A Machine Learning Model to Predict Urban Sprawl Using Official Land-use Data. Urbanism. Arhitectura. Constructii, 14(3), 249–258.
41- Nugroho, F., & Al-Sanjary, O. I. (2018). A Review of Simulation Urban Growth Model. International Journal of Engineering & Technology, 7(11), 17–23. https://doi.org/10.14419/ijet.v7i4.11.20681
42- Ozegbe, K. C. (2022). Earthquake Response, Vulnerability Assessment, and Rehabilitation of Water Conveyance Tunnels in High Seismic Hazard Regions: Whitewater Tunnel No. 2 Seismic Resilience Study. Lifelines 2022: 1971 San Fernando Earthquake and Lifeline Infrastructure - Selected Papers from the Lifelines 2022 Conference, 1, 356–368. https://doi.org/10.1061/9780784484432.032
43- Peril Classification and Hazard Glossary. (n.d.). Retrieved January 29, 2025, from https://council.science/wp-content/uploads/2019/12/Peril-Classification-and-Hazard-Glossary-1.pdf
44- SADC DRM IMS | Risk Components | SADC - DRM IMS. (n.d.). Retrieved January 29, 2025, from https://drmims.sadc.int/en/sendai-framework/risk-components
45- Samuel, M. A., Xiong, E., Haris, M., Lekeufack, B. C., Xie, Y., & Han, Y. (2024). Assessing Seismic Vulnerability Methods for RC-Frame Buildings Pre-and Post-Earthquake. Sustainability, 16(23), 10392.
46- Schneiderbauer, S., & Ehrlich, D. (2004). Risk, hazard and people’s vulnerability to natural hazards. A Review of Definitions, Concepts and Data. European Commission Joint Research Centre. EUR, 21410, 40.
47- Silva, V., Crowley, H., Varum, H., Pinho, R., & Sousa, R. (2014). Evaluation of analytical methodologies used to derive vulnerability functions. Earthquake Engineering & Structural Dynamics, 43(2), 181–204.
48- Social Vulnerability Index | Place and Health - Geospatial Research, Analysis, and Services Program (GRASP) | ATSDR. (n.d.). Retrieved January 24, 2025, from https://www.atsdr.cdc.gov/place-health/php/svi/index.html
49- UNDRR(a). (2015). Sendai Framework for Disaster Risk Reduction 2015-2030 | UNDRR. https://www.undrr.org/publication/sendai-framework-disaster-risk-reduction-2015-2030
50- UNDRR(C). (2015). Disaster Risk | Understanding Disaster Risk. https://www.preventionweb.net/understanding-disaster-risk/component-risk/disaster-risk
51- UNIDSR. (2017). Disaster Resilience Scorecard for Cities. Preliminary Level Assessment. United Nations Office for Disaster Reduction Geneva.
52- Van Westen, C. J. (2013). Remote sensing and GIS for natural hazards assessment and disaster risk management. Treatise on Geomorphology, 3(15), 259–298.
53- Waly, N. M., Ayad, H. M., & Saadallah, D. M. (2021). Assessment of spatiotemporal patterns of social vulnerability: A tool to resilient urban development Alexandria, Egypt. Ain Shams Engineering Journal, 12(1), 1059–1072.
54- Wang, Y., Sun, Y., Cao, X., Wang, Y., Zhang, W., & Cheng, X. (2023). A review of regional and Global scale Land Use/Land Cover (LULC) mapping products generated from satellite remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 206, 311–334. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2023.11.014
55- Ward, P. J., Blauhut, V., Bloemendaal, N., Daniell, J. E., de Ruiter, M. C., Duncan, M. J., Emberson, R., Jenkins, S. F., Kirschbaum, D., & Kunz, M. (2020). Natural hazard risk assessments at the global scale. Natural Hazards and Earth System Sciences, 20(4), 1069–1096.
56- What is remote sensing and what is it used for? | U.S. Geological Survey. (n.d.). Retrieved January 26, 2025, from https://www.usgs.gov/faqs/what-remote-sensing-and-what-it-used
57- Yong, C., Qi-fu, C., & Ling, C. (2001). Vulnerability Analysis in Earthquake Loss Estimate. Natural Hazards, 23(2), 349–364. https://doi.org/10.1023/A:1011181803564
Ziraoui, A., Kissi, B., Aaya, H., & Azdine, I. (2023). The State of the Art on Seismic Protection Technologies for Structures: A Review. International Conference on Advanced Materials for Sustainable Energy and Engineering, 68–74.