2- Al-Bassam, Fida. (2002): Hand Embroidery, Dar Al-Zahraa, first edition.
3- AlDabbagh, M. (2019). Traditional Clothing, Souvenirs, and Food as Factors of Tourist Attraction. Journal of Home Economics 29(1), 197-225.
http://homeEcon.menofia.edu.eg
8- Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications.
9- Fida, Laila (1993): Traditional clothing for women in Makkah Al-Mukarramah, its methods and embroidery, a field study, [Unpublished Master''''s thesis], College of Education for Home Economics
10- Haleem, A., Javaid, M., Qadri, M. A., Singh, R. P., & Suman, R. (2022). AI (AI) applications for marketing: A literature-based study. International Journal of Intelligent Networks, 3, 119–132.
https://doi.org/10.1016/j.ijin.2022.08.005
11- Justinia, T. (2022). Saudi Arabia: Transforming Healthcare with Technology. In: Hübner, U.H., Mustata Wilson, G., Morawski, T.S., Ball, M.J. (eds) Nursing Informatics. Health Informatics. Springer, Cham.
https://doi.org/10.1007/978-3-030-91237-6_47
12- Kamel, A. a. E. a. A., & El-Mougi, F. a. E. Z. (2020). A fuzzy decision support system for diagnosis of some liver diseases in educational medical institutions. International Journal of Fuzzy Logic and Intelligent System, 20(4), 358–368.
https://doi.org/10.5391/ijfis.2020.20.4.358
13- Konagala, P. (2022): Big Data Analytics Using Apache Hive to Analyze Health Data. In Research Anthology on Big Data Analytics, Architectures, and Applications (pp. 979-992). IGI Global.
14- Korinek, A., Schindler, M., & Stiglitz, J. (2021). Technological Progress, AI, and Inclusive Growth, IMF Working Papers, 2021(166), A001. Retrieved Jul 1, 2023, from
https://doi.org/10.5089/9781513583280.001.A001
15- Laplante, P. A. (2018). Dictionary of computer science. CRC Press.
16- Lattanzi, L., Raffaeli, R., Peruzzini, M., & Pellicciari, M. (2021). Digital twin for smart manufacturing: a review of concepts towards a practical industrial implementation. International Journal of Computer Integrated Manufacturing, 34(6), 567–597.
https://doi.org/10.1080/0951192x.2021.1911003
17- Lindsay, G. W. (2021). Convolutional neural networks as a model of the visual system: past, present, and future. Journal of Cognitive Neuroscience, 33(10), 2017–2031.
https://doi.org/10.1162/jocn_a_01544
18- Madulid, J. P. A., & Mayol, P. E. (2019). Clothing Classification using the Convolutional Neural Network Inception Model. Proceedings of the 2nd International Conference on Information Science and Systems.
https://doi.org/10.1145/3322645.3322646
20- Meena, G., Mohbey, K. K., & Kumar, S. (2023). Sentiment analysis on images using convolutional neural networks based Inception-V3 transfer learning approach. International Journal of Information Management Data Insights, 3(1), 100174.
https://doi.org/10.1016/j.jjimei.2023.100174
21- Nirthika, R., Manivannan, S., Ramanan, A. et al. Pooling in convolutional neural networks for medical image analysis: a survey and an empirical study. Neural Comput & Applic 34, 5321–5347 (2022).
https://doi.org/10.1007/s00521-022-06953-8
25- Razavian, A. S., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). CNN Features Off-the-Shelf: An Astounding Baseline for Recognition. In Computer Vision and Pattern Recognition Workshops (CVPRW), 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, IEEE (pp. 512-519).
https://doi.org/10.1109/CVPRW.2014.131
27- Saudi Authority for Data and AI. (n.d.). Saudi Authority for Data and AI. https://sdaia.gov.sa/en/MediaCenter/News/Pages/NewsDetails.aspx?NewsID=168
33- Shah, R., Sridharan, N. V., Mahanta, T. K., Muniyappa, A., Vaithiyanathan, S., Ramteke, S. M., & Marian, M. (2023). Ensemble Deep Learning for Wear Particle Image Analysis. Lubricants, 11(11), 461. MDPI AG. Retrieved from
https://dx.doi.org/10.3390/lubricants11110461
35- Shrouf, F., Ordieres, J., & Miragliotta, G. (2014). Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm.
https://doi.org/10.1109/ieem.2014.7058728
36- Su, H.; Wang, P.; Liu, L.; Li, H.; Li, Z.; Zhang, Y. Where to look and how to describe: Fashion image retrieval with an attentional heterogeneous bilinear network. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 3254–3265.
38- Turkestani, Houria Bint Abdullah, and Makrish, Nora (2011): Designing embroidered pieces of art derived from traditional embroidery in the Makkah Al-Mukarramah region, Journal of Science and Arts, Studies and Research, Vol. 23, p. 4: pp. 127-145.
http://search.mandumah.com/Record/110495
39- Vijayaraj, A., Vasanth Raj, P. T., Jebakumar, R., Gururama Senthilvel, P., Kumar, N., Suresh Kumar, R., & Dhanagopal, R. (2022). Deep Learning Image Classification for Fashion Design. Wireless Communications & Mobile Computing, 1–13.
https://doi-org.sdl.idm.oclc.org/10.1155/2022/7549397
40- Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., & Xu, W. (2016). Cnn-rnn: A unified framework for multi-label image classification. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2285-2294. https://arxiv.org/ftp/arxiv/papers/1604/1604.04573.pdf
Zhou Z, Deng W, Wang Y, Zhu Z. Classification of clothing images based on a parallel convolutional neural network and random vector functional link optimized by the grasshopper optimization algorithm. Textile Research Journal. 2022;92(9-10):1415-1428. https://doi.org/
10.1177/00405175211059207