تصنيف الأزياء التقليدية السعودية باستخدام تقنية التعلم العميق

نوع المستند : Original Article

المؤلفون

1 أستاذ تکنولوجیا تصنیع الملابس، قسم الملابس والنسیج، کلیة الأقتصاد المنزلى، جامعة الملک عبد العزیز، جدة

2 جامعة الملك عبدالعزيز

المستخلص

هدفت هذه الدراسة إلى تطوير نظام لتصنيف الملابس التقليدية في المملكة العربية السعودية باستخدام الشبكات العصبية التلافيفية. تم جمع مجموعة بيانات مكونة من 339 صورة عبر 3 فئات ومعالجتها مسبقًا، بما في ذلك التطبيع والاقتصاص والتعتيم لتحسين جودة الصورة.
أنجز النظام المقترح التصنيف من خلال عملية من خطوتين: جمع مجموعة البيانات باستخدام تقنيات الذكاء الاصطناعي (AI) لجمع 339 صورة مصنفة للملابس من المملكة العربية السعودية والتي كانت بمثابة الأساس للتدريب، والتصنيف باستخدام نموذج Inception v3 CNN مع نقل التعلم.
تم إجراء الاختبار بدقة إجمالية قدرها 84.85% ، مما يدل على قدرة العارضة على تصنيف الملابس التقليدية بشكل صحيح. تم أيضًا تنفيذ مطابقة المسافة الإقليدية الموزونة لاسترداد أفضل 5 مطابقات تشابه لصور الاستعلام.
تتيح واجهة المستخدم الرسومية التنفيذ العملي وتصنيف ملابس المستخدم النهائي. تشير النتائج الواعدة إلى أن التعلم العميق قابل للتطبيق في هذا المجال. ومع ذلك، تشمل القيود حجم مجموعة البيانات الصغيرة. يتضمن العمل المستقبلي جمع مجموعة أكبر وأكثر تنوعًا من صور الملابس السعودية التقليدية لتحسين أداء التصنيف.

الكلمات الرئيسية


1-     Aita, R. (2022). Big Data Analytics for Industry 4.0: A Literature Review. IEEE Access, 10, 35489-35503. https://doi.org/10.1109/ACCESS.2022.3086343 
2-     Al-Bassam, Fida. (2002): Hand Embroidery, Dar Al-Zahraa, first edition.
3-     AlDabbagh, M. (2019). Traditional Clothing, Souvenirs, and Food as Factors of Tourist Attraction. Journal of Home Economics 29(1), 197-225. http://homeEcon.menofia.edu.eg 
4-     Al-Sahari, Aisha (2018): Designing a Virtual Museum of Traditional Costumes in the Kingdom of Saudi Arabia, International Design Magazine, 8(2), 87-101.      http://search.mandumah.com/Record/985245  
6-     Bennett, Mike (2020): Blockchain, AI and knowledge graphs: What does it mean for the business.  Journal of Securities Operations & Custody, 12 (4), 357-366. https://ideas.repec.org/a/aza/jsoc00/y2020v12i4p357-366.html
7-     Choudhary, K., DeCost, B., Chen, C. et al. Recent advances and applications of deep learning methods in materials science. npj Comput Mater 8, 59 (2022). https://doi.org/10.1038/s41524-022-00734-6
8-     Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications.
9-     Fida, Laila (1993): Traditional clothing for women in Makkah Al-Mukarramah, its methods and embroidery, a field study, [Unpublished Master''''s thesis], College of Education for Home Economics
10-   Haleem, A., Javaid, M., Qadri, M. A., Singh, R. P., & Suman, R. (2022). AI (AI) applications for marketing: A literature-based study. International Journal of Intelligent Networks, 3, 119–132. https://doi.org/10.1016/j.ijin.2022.08.005
11-   Justinia, T. (2022). Saudi Arabia: Transforming Healthcare with Technology. In: Hübner, U.H., Mustata Wilson, G., Morawski, T.S., Ball, M.J. (eds) Nursing Informatics. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-030-91237-6_47  
12-   Kamel, A. a. E. a. A., & El-Mougi, F. a. E. Z. (2020). A fuzzy decision support system for diagnosis of some liver diseases in educational medical institutions. International Journal of Fuzzy Logic and Intelligent System, 20(4), 358–368. https://doi.org/10.5391/ijfis.2020.20.4.358
13-   Konagala, P. (2022): Big Data Analytics Using Apache Hive to Analyze Health Data. In Research Anthology on Big Data Analytics, Architectures, and Applications (pp. 979-992). IGI Global.
14-   Korinek, A., Schindler, M., & Stiglitz, J. (2021). Technological Progress, AI, and Inclusive Growth, IMF Working Papers, 2021(166), A001. Retrieved Jul 1, 2023, from https://doi.org/10.5089/9781513583280.001.A001
15-   Laplante, P. A. (2018). Dictionary of computer science. CRC Press.
16-   Lattanzi, L., Raffaeli, R., Peruzzini, M., & Pellicciari, M. (2021). Digital twin for smart manufacturing: a review of concepts towards a practical industrial implementation. International Journal of Computer Integrated Manufacturing, 34(6), 567–597. https://doi.org/10.1080/0951192x.2021.1911003
17-   Lindsay, G. W. (2021). Convolutional neural networks as a model of the visual system: past, present, and future. Journal of Cognitive Neuroscience, 33(10), 2017–2031. https://doi.org/10.1162/jocn_a_01544
18-   Madulid, J. P. A., & Mayol, P. E. (2019). Clothing Classification using the Convolutional Neural Network Inception Model. Proceedings of the 2nd International Conference on Information Science and Systems. https://doi.org/10.1145/3322645.3322646
19-   Mathworks. (n.d.). Comparing GUIDE and app designer. MATLAB & Simulink. https://www.mathworks.com/products/matlab/app-designer/comparing-guide-and-app-designer.html
20-   Meena, G., Mohbey, K. K., & Kumar, S. (2023). Sentiment analysis on images using convolutional neural networks based Inception-V3 transfer learning approach. International Journal of Information Management Data Insights, 3(1), 100174. https://doi.org/10.1016/j.jjimei.2023.100174
21-   Nirthika, R., Manivannan, S., Ramanan, A. et al. Pooling in convolutional neural networks for medical image analysis: a survey and an empirical study. Neural Comput & Applic 34, 5321–5347 (2022). https://doi.org/10.1007/s00521-022-06953-8
23-   Pantanella, F. (2022, July 18). How Fashion Designers find Inspiration. Beyond Talent Recruitment. https://beyondtalentrecruitment.com/blog/fashion-designers
24-   Pasikowska-Schnass, M., Lim Y., (2023). AI in the context of cultural heritage and museums Complex challenges and new opportunities. https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/747120/EPRS_BRI(2023)747120_EN.pdf
25-   Razavian, A. S., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). CNN Features Off-the-Shelf: An Astounding Baseline for Recognition. In Computer Vision and Pattern Recognition Workshops (CVPRW), 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, IEEE (pp. 512-519). https://doi.org/10.1109/CVPRW.2014.131 
26-   Saudi Arabia eGovernment Program. (n.d.). Ministry of Foreign Affairs. Retrieved June 30, 2023, from https://www.my.gov.sa/wps/portal/snp/main
27-   Saudi Authority for Data and AI. (n.d.). Saudi Authority for Data and AI. https://sdaia.gov.sa/en/MediaCenter/News/Pages/NewsDetails.aspx?NewsID=168
28-   Saudi Data and AI Authority. (n.d.). About us. Retrieved June 30, 2023, from https://www.sdaia.gov.sa/en/about-us/
29-   Saudi Vision 2030. (n.d.). Digital transformation. Retrieved from https://www.vision2030.gov.sa/en/node/650
30-   Saudigazette. (2019, June 29). Crown Prince’s speech at G20: Cooperation needed to face new challenges. https://saudigazette.com.sa/article/570379
31-   Schindler, M., Korinek, A., & Stiglitz, J. E. (2021). Technological Progress, AI, and Inclusive Growth. IMF Working Paper, 2021 (166), 1. https://doi.org/10.5089/9781513583280.001
32-   Sestino, A., Prete, M. G., Piper, L., & Guido, G. (2020). Internet of Things and Big Data as enablers for business digitalization strategies. Technovation, 98, 102173. https://doi.org/10.1016/j.technovation.2020.102173
33-   Shah, R., Sridharan, N. V., Mahanta, T. K., Muniyappa, A., Vaithiyanathan, S., Ramteke, S. M., & Marian, M. (2023). Ensemble Deep Learning for Wear Particle Image Analysis. Lubricants, 11(11), 461. MDPI AG. Retrieved from https://dx.doi.org/10.3390/lubricants11110461
34-   Sharma, A. (2021, July 4). Saudi Arabia unveils national strategy for data and AI. The National. https://www.thenationalnews.com/business/technology/saudi-arabia-unveils-national-strategy-for-data-and-ai-1.1097271
35-   Shrouf, F., Ordieres, J., & Miragliotta, G. (2014). Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. https://doi.org/10.1109/ieem.2014.7058728
36-   Su, H.; Wang, P.; Liu, L.; Li, H.; Li, Z.; Zhang, Y. Where to look and how to describe: Fashion image retrieval with an attentional heterogeneous bilinear network. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 3254–3265.
37-   Taye, M.M. Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions. Computers 2023, 12, 91. https://doi.org/10.3390/computers12050091
38-   Turkestani, Houria Bint Abdullah, and Makrish, Nora (2011): Designing embroidered pieces of art derived from traditional embroidery in the Makkah Al-Mukarramah region, Journal of Science and Arts, Studies and Research, Vol. 23, p. 4: pp. 127-145. http://search.mandumah.com/Record/110495
39-   Vijayaraj, A., Vasanth Raj, P. T., Jebakumar, R., Gururama Senthilvel, P., Kumar, N., Suresh Kumar, R., & Dhanagopal, R. (2022). Deep Learning Image Classification for Fashion Design. Wireless Communications & Mobile Computing, 1–13. https://doi-org.sdl.idm.oclc.org/10.1155/2022/7549397
40-   Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., & Xu, W. (2016). Cnn-rnn: A unified framework for multi-label image classification. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2285-2294. https://arxiv.org/ftp/arxiv/papers/1604/1604.04573.pdf
41-   Ye, Q. (2023), "Metadata construction scheme of a traditional clothing digital collection", The Electronic Library, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/EL-01-2023-0004
42-   Zawya. (2022, November 4). Saudi’s STC partners with Ericsson for AI-based solutions to enhance networks. ACE Times. https://www.zawya.com/en/business/technology-and-telecom/saudis-stc-partners-with-ericsson-for-ai-based-solutions-to-enhance-networks-ibc620cq
Zhou Z, Deng W, Wang Y, Zhu Z. Classification of clothing images based on a parallel convolutional neural network and random vector functional link optimized by the grasshopper optimization algorithm. Textile Research Journal. 2022;92(9-10):1415-1428. https://doi.org/10.1177/00405175211059207