الأداء الحراری للغلاف الخارجی للمبانی السکنیة فی العاصمة الإداریة الجدیدة فی مصر

نوع المستند : Original Article

المؤلف

المستخلص

أصبح الاحتباس الحراری والتحدیات البیئیة من القضایا الرئیسیة فی کل جانب من جوانب حیاتنا ولاسیما فی مجال التصمیم المعماری. الحاجة إلى اتباع معاییر العمارة البیئیة والاستدامة تعتبر قضیة حاسمة فی وقتنا الحالی. تملک مصرالعدید من الأکواد الخاصة بالبناء ومنها کود لتحسین کفاءة الطاقة لجمیع أنواع المبانی. ومع ذلک ، فإن القطاع السکنی لا یلتزم بشکل کامل بهذه المعاییر القیاسیة. یدرس هذا البحث مدى توافق غلاف المبنى الخارجی بمشروع المجمع السکنی R3 بالعاصمة الإداریة حیث أنه یمثل نموذجًا أولیًا سیتم تنفیذه على نطاق واسع فی مناطق مختلفة عبر العاصمة الإداریة الجدیدة. یدرس البحث أیضًا حجم توفیر الطاقة المحتمل الناتج عن تحسین الغلاف الخارجی المبنى لیتوافق مع االکود المصری لتحسین کفاءة الطاقة فی المبانی. أظهرت الدراسة التحلیلیة بالبحث والمحاکاة أن غلاف المبنى غیر متوافق مع الکود المصری لتحسین کفاءة الطاقة فی المبانی للمبانی السکنیة ویمکن أن یؤدی اتباع الکود الخاص بعناصر الغلاف الخارجی للمبنى إلى تحقیق توفیر سنوی فی استهلاک الطاقة یصل إلى 20٪.

الكلمات الرئيسية


  1. Gamal Eldine, M.; Corvacho, H. (2022) Compliance with Building Energy Code for the Residential Sector in Egyptian Hot-Arid Climate: Potential Impact, Difficulties, and Further Improvements. Sustainability 14, 3936.
  2. Florentine, V.; Caterina, S.; Kurt,W.; Riadh, B. (2013) Energy Efficiency Building Code A Roadmap for Implementation in the MENA Region; UN-CTCN: Copenhagen, Denmark.
  3. Fahmy, M.; Mahdy, M.M.; Nikolopoulou, M. (2013) Prediction of Future Energy Consumption Reduction Using GRC Envelope Optimization for Residential Buildings in Egypt. Energy Build.
  4. CAPMAS (2017). Annual Bulletin of Environment Statistics-Part One: Environment Conditions & Quality; Central Agency for Public Mobilization and Statistics: Cairo, Egypt.
  5. Egyptian Electricity Holding Company (2017), Annual Report, 2016/2017, Ministry of Electricity & Renewable Energy, Egypt.
  6. Ministry of Energy (2018) Egyptian Electricity Holding Company Annual Report 2017/2018; Ministry of Energy: Cairo, Egypt.
  7. Serag, Yehya. (2017). The New Administrative Capital of Egypt a Critical Review from the Regional. SSRN Electronic Journal. 10.2139/ssrn.3162316.
  8. Mohammad Yusoff, W.F.; Mohamed, M.F. (2017) Building Energy Efficiency in Hot and Humid Climate. In Encyclopedia of Sustainable Technologies; Elsevier: Amsterdam, The Netherlands.
  9. Abdulsada, Ghanim & Mohammed Salih, Tawfeeq. (2022). The impact of efficient insulation on thermal performance of building elements in hot arid region. Renewable Energy and Environmental Sustainability. 7. 2. 10.1051/rees/2021050.
  10. M. Al-Homoud (2004), The effectiveness of thermal insulation in different types of buildings in hot climates, J. Therm. Env. Build. Sci. 27, 3
  11. M. Aboulnaga, M. Moustafa (2016), Sustainability of higher educational buildings, Renewable Energy and Environmental Sustainability.1, 28. DOI: 10.1051/rees/2016016
  12. Sharma, S.K.; Mohapatra, S.; Sharma, R.C.; Alturjman, S. Altrjman, C.; Mostarda, L.; Stephan, T. (2022) Retrofitting Existing Buildings to Improve Energy Performance. Sustainability, 14, 666. https:// doi.org/10.3390/su14020666
  13. Khalil, A., Fikry, M., and Abdeaal, W. (2018). High technology or low technology for buildings envelopes in residential buildings in Egypt. Alexandria Engineering Journal, 57(4), 3779-3792. https://doi.org/10.1016/j.aej.2018.11.001.
  14. Shehata, Ahmed & Waheeb, Sahl. (2018). Thermal Performance of Contemporary Residential Buildings in Hot-Arid Climates. Journal of Advanced Research in Dynamical and Control Systems. special. 1295-1303.
  15. Jianen Huang, Shasha Wang, Feihong Teng, Wei Feng (2021) Thermal performance optimization of envelope in the energy-saving renovation of existing residential buildings, Energy and Buildings, Volume 247, 111103, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2021.111103.
  16. Shi, L., Zhang, H., Li, Z., Luo, Z., & Liu, J. (2018). Optimizing the thermal performance of building envelopes for energy saving in underground office buildings in various climates of China. Tunnelling and Underground Space Technology, 77, 26 35.
  17. Hoof, Joost & Mazej, Mitja & Hensen, Jan. (2010). Thermal comfort: Research and practice. Frontiers in Bioscience. 15. 765-788. 10.2741/3645.
  18. Mohamed, Edeisy & Cecere, Carlo. (2017). Envelope Retrofit in Hot Arid Climates. Procedia Environmental Sciences. 38. 264-273. 10.1016/j.proenv.2017.03.075.
  19. Osman, M., May (2011), Evaluating and enhancing design for natural ventilation in walk-up public housing blocks in the Egyptian desert climatic design region, Doctorate of Philosophy, Dundee school of architecture, Scotland.
  20. The Egyptian Code for Improving Energy Efficiency in Buildings ECP 306-2005. First part: residential buildings.
  21. Madding, Robert. (2008). Finding R-values of Stud-Frame Constructed Houses with IR Thermography. Inframation 2008. 9. 261-277.
  22. Attia, S., Evrard, A., and Gratia, E. (2012), "Development of benchmark models for the Egyptian residential buildings sector". Applied Energy 94 (2012) 270–284, doi:10.1016/j.apenergy.2012.01.065
  23. Motawa, I., Elsheikh, A., and Diab, E. (2021). Energy Performance Analysis of Building Envelopes. Journal of Engineering, Project, and Production Management, 11(3), 196-206.
  24. 21.  Giama, E. & Kyriaki, Elli & Papadopoulos, Agis. (2020). U-Value: A key role parameter for sustainable buildings. Journal of Sustainable Architecture and Civil Engineering. DOI:  https://doi.org/10.5755/j01.sace.16.3.15442
  25. Chen, F., Wittkopf, S. K., Khai Ng, P., & Du, H. (2012). Solar heat gain coefficient measurement of semi-transparent photovoltaic modules with indoor calorimetric hot box and solar simulator. Energy and Buildings, 53, 74–84. doi:10.1016/j.enbuild.2012.06.00