

The impact of nanotechnology in improving the quality of interior design

Prof. Rania Mosad

Interior design and Furniture, Faculty of Applied Arts, Helwan University rania_mosaad@hotmail.com

Prof. Ghada Elmosallamy

Professor, Vice Dean for Education and Student Affairs, Faculty of Applied Arts, Benha University, ghada.elmosallamy@fapa.bu.edu.eg

Menna Allah Fathy Nasr Eldin

Master Candidate, Faculty of Applied Arts Helwan University, mennaallah2984@a-arts.helwan.edu.eg

Abstract:

Nanotechnology, which has emerged as one of the most important innovations of the 21st century, has revolutionized science and technology, making it a vital element in several sectors, particularly interior design. It has been used to improve the quality and value of interior spaces, adding a creative dimension to architecture that combines innovation and aesthetic standards. Nanotechnology also offers new horizons for sustainable design through multiple applications, including advanced coatings, effective thermal insulation, air purification technologies, and solar cells. Hence, the importance of studying this technology to ensure its potential is optimally exploited. The concept of "nanotechnology architecture" has emerged as an architectural approach aimed at promoting environmental sustainability. It relies on the use of innovative materials and tools to improve energy efficiency and reduce reliance on non-renewable resources, with a focus on clean energy. Nanotechnology has significantly contributed to increasing the efficiency of traditional building materials such as glass and concrete, enabling the design of buildings that interact dynamically with the surrounding natural environment. This technology has paved the way for an effective integration between smart architecture and urban sustainability, through the development of smart and environmentally sustainable materials. When applied locally, it enables the construction of highly efficient buildings that combine technological innovation with structural sustainability. The concept of nanotechnology and nanoscience was discussed in this context, highlighting their role in improving the environmental and economic efficiency of buildings. The analysis focused on the compatibility of nanomaterials with design principles in terms of functional and aesthetic properties, highlighting their remarkable features such as self-cleaning, antibacterial, self-healing, advanced thermal insulation, and other smart properties. These applications include numerous materials such as cladding, paints, and textiles, enhancing the sustainability of buildings using innovative technologies such as nanoscale solar panels to reduce carbon emissions. Practical examples of buildings using nanotechnology were analyzed, focusing on thermal insulation and the use of self-cleaning and antimicrobial materials, given their clear economic benefits. The importance of nano-based insulation materials in controlling indoor temperatures and significantly reducing energy consumption was also highlighted. Finally, the relationship between the use of these materials and the design of sustainable buildings compliant with the LEED global rating system was reviewed. This system highlights the positive impact of nanotechnology on developing sustainable building assessment strategies and enhancing their environmental and social performance. The research problem lies in the scarcity of studies addressing the applications of green nanotechnology in sustainable interior design, which is one of the challenges facing this field. Furthermore, it has been noted that some interior design professionals overlook the importance and benefits of replacing traditional technologies currently used with ones based on green nanotechnology to achieve sustainable interior design goals. The research aims to explain the concept of "sustainable green nanotechnology" and its impact on the development of innovative materials and technologies that promote environmental sustainability and reduce the negative impact on nature, with a focus on its use in various sectors. It also aims to conduct a comprehensive analysis of the role of green nanotechnology applications in sustainable interior design, while evaluating the effectiveness of this technology in achieving sustainability goals, such as improving energy efficiency and reducing the use of natural resources. It also aims to clarify the compatibility of nanomaterials with the LEED system. Research results: Clarifying the importance of using sustainable green nanotechnology in architecture and interior design by improving the performance efficiency of existing buildings or developing and enhancing the properties of materials used in interior design. Clarifying the compatibility of nanomaterials with the Leadership in Energy (LEED) system. Accordingly, the research includes two axes: the first is the theoretical aspect, which addresses the study of sustainable green nanotechnology and the importance of its application to sustainable building architecture and interior design materials, as well as its applications in the field of energy, whether for energy generation, rationalization of consumption, or storage. The second is the analytical aspect, which highlights global models that have achieved sustainability standards through the use of nanotechnology applications to improve energy management efficiency through innovative solutions for rationalization, storage, and production of energy, as well as studying the compatibility of nanomaterials with the Leadership in Energy (LEED) system.

Paper History:

Paper received July 18, 2025, Accepted September 6, 2025, Published online November 1, 2025

Keywords:

Nanotechnology, Sustainable Green Nanotechnology

References:

- 1- Raafat Abdel Sayed Bakhit "Nanotechnology and its Impact on Changing and Developing the Properties of Materials in Interior Design" Heritage and Design Magazine Volume 2 Issue 9 June 2022 p. 208.
- 2- Alaa Mohamed Samir "Using Green Nanotechnology to Achieve Sustainable Interior Design" Published Research Second International Conference of the Faculty of Applied Arts Helwan University 2012 pp. 3, 5.
- 3- Omnia Magdy Abdel Aziz "Sustainability Standards Using Smart Technologies in Interior Design of Institutions for Children with Physical Disabilities in Egypt, Ages 6-12" PhD Thesis Helwan University Faculty of Applied Arts 2017 pp. 281, 285
- 4- Lamis Sayed Mohammadi "The Role of Technology in Developing Architectural Elements" Master's Thesis Faculty of Engineering Alexandria University 2011 pp. 168, 158-165
- 5- Abdel Rahman Al-Lawandi "The Role of Nanotechnology in Achieving Sustainability in Primary Schools (A Case Study of Basic Education Classrooms in Primary Schools in Damietta Governorate)" PhD Thesis Faculty of Engineering Mansoura University 2022 pp. 22, 35
- 6- Ramirez, Anibal Maury, Kristof Demeestere, Nele De Belie, Tapio Mantyla, and Erkki Levanen "Titanium Dioxide Coated Cementitious Materials for Air Purifying Purposes: Preparation, Characterization and Toluene Removal Potential" Building and Environment 2009.
- 7- Wu, D., S. Meure, and D. Solomon "Self-healing polymeric materials: A review of Recent developments" Progress in polymer Science 33 2008.
- 8- Gaurao, P., & Swapnal, P.. Light Transmitting Concrete- A New Innovation. International Journal of Engineering Research and General Science, Volume 3 Issue (2), (2015), P 806–811.
- 9- Sciancalepore, C., & Bondioli, F. Durability of SiO2–TiO2 Photocatalytic Coatings on Ceramic Tiles. International Journal of Applied Ceramic Technology, 12, (2014), P 679 684.
- 10- Tegart, Greg "Energy and nanotechnologies: Priority areas for Australia's Future" Technological Forecasting and Social Change 2009

CITATION

Rania Mosad, et al (2025), The impact of nanotechnology in improving the quality of interior design, International Design Journal, Vol. 15 No. 6, (November 2025) pp 339-351