

Adaptive Interior Design as an Intelligent Environmental Mediator Between Users and Changing Climate

Rana Hisham Mohamed

Assistant Professor, Department of Décor (Interior Architecture) , Faculty of Fine Arts and Design, Horus University, Egypt, rmhassan@horus.edu.eg

Abstract:

The surrounding natural environment has become a critical factor in the design process, as climate change now demands respect through strategies that develop interior spaces capable of adapting to both user needs and environmental conditions. This research explores the role of adaptive interior design as an effective mediator in mitigating climate impacts, through the integration of smart technologies and responsive systems that interact with environmental stimuli such as heat, lighting, occupancy, and CO₂ levels.

The study highlights a direct relationship between interior design and climate change—greater reliance on non-renewable energy sources without sustainability strategies leads to increased environmental degradation. At the same time, climate change has driven the emergence of environmentally conscious and adaptive design trends. A mixed-methods approach was adopted, combining theoretical analysis of sustainability concepts, biophilic interaction, Internet of Things (IoT) applications, and human-computer interaction (HCI), with applied case studies including the Italian Pavilion at Expo 2025 Osaka and a smart penthouse in Maadi, Cairo. An electronic survey was also conducted, which revealed a high level of user awareness and willingness to adopt smart, sustainable solutions despite limited practical implementation. The study recommends integrating intelligent systems into interior design from early planning stages. It emphasizes that the use of sensors and smart technologies is no longer a luxury or a sign of wealth—it is an urgent necessity for contributing to the reduction of climate change impact

Paper History:

Paper received June 22, 2025, Accepted August 25, 2025, Published online November 1, 2025

Keywords:

Adaptation, Human-Computer Interaction technologies-Climate Changes -Internet of Thing ,- Sustainable

References:

- 1- Idris, M. (2024). Architecture in the Face of Pandemics and Climate Change: Design Mechanism, Outcomes, and Shared Response Criteria. International Design Journal, 14(1), 397–407. https://doi.org/10.21608/idj.2024.329322
- 2- Ching. Francis, Shapiro. Lan, (2012), "Green Building Illustrated", John Wiley& Sons, Inc., New Jersey, Canad.A Guide to Careers in Sustainable
- 3- Eladawy, M. (2022). Green Architecture: Reasons for Emergence Interrelated Concepts Fundamental Principles. https://www.researchgate.net/publication/359216424_almart_alkhdra_asbab_alzhwr_-_almfahym_almtdakhlh_-_almbady_alasasyh
- 4- United Nations. (n.d.). What is Climate Change? Retrieved July 4, 2025, https://www.un.org/en/climatechange/what-is-climate-change
- 5- Bang, E. (2024, January 31). Teach about climate change with 30 graphs from The New York Times. The New York Times. Retrieved July 4, 2025, https://www.nytimes.com/2024/01/31/learning/lesson-plans/teach-about-climate-change-with-30-graphs-from-the-new-york-times.html
- 6- United Nations. (n.d.). What is Climate Change? Retrieved July 4, 2025, https://www.un.org/en/climatechange/what-is-climate-change
- 7- Bang, E. (2024, January 31). Teach about climate change with 30 graphs from The New York Times. The New York Times. Retrieved July 4, 2025, https://www.nytimes.com/2024/01/31/learning/lesson-plans/teach-about-climate-change-with-30-graphs-from-the-new-york-times.html
- 8- Ji Min, Gongxing Yan, Azher M. Abed, Samia Elattar, Mohamed Amine Khadimallah, Amin Jan, H. Elhosiny Ali, The effect of carbon dioxide emissions on the building energy efficiency, Volume 326,2022, ISSN 0016-2361, (https://www.sciencedirect.com/science/article/pii/S0016236122016854) 11.71
- 9- Tovar, E. (2023, October 31). How to reduce the carbon footprint through architecture? Three

- approaches across the building lifecycle. ArchDaily. Retrieved July 4, 2025, https://www.archdaily.com/1004300/how-to-reduce-the-carbon-footprint-through-architecture-three-approaches-across-the-building-lifecycle
- 10- Pomponi, F., De Wolf, C., & Moncaster, A. (Eds.). (2018). Embodied Carbon in Buildings: Measurement, Management, and Mitigation. Springer. https://doi.org/10.1007/978-3-319-72796-7
- 11- Blueprint for Better. (2021, January 7). Architecture's carbon problem. Retrieved July 4, 2025, https://blueprintforbetter.org/articles/architectures-carbon-problem/
- 12- Li, HuaDong & Yang, Xia & Zhu, Hai. (2023). Reducing carbon emissions in the architectural design process via transformer with cross-attention mechanism. Frontiers in Ecology and Evolution.
- 13- Yaw-Shyan Tsay, Yu-Chun Yeh, Huei-Yu Jheng, Study of the tools used for early-stage carbon footprint in building design, e-Prime Advances in Electrical Engineering, Electronics and Energy, Volume 4, ' ' ' ', https://www.sciencedirect.com/science/article/pii/S2772671123000232
- 14- Saber, A. (2021). Recycling trends in light of appropriate design ideas from a sustainability perspective. Journal of Arts and Architecture for Research Studies, 2(4), 33–52. https://doi.org/10.47436/jaars.2021.92535.1039
- 15- Rybak-Niedziółka, K., Starzyk, A., Łacek, P., Mazur, Ł., Myszka, I., Stefańska, A., Kurcjusz, M., Nowysz, A., & Langie, K. (2023). Use of Waste Building Materials in Architecture and Urban Planning—A Review of Selected Examples. Sustainability, 15(6). https://doi.org/10.3390/su15065047
- 16- United Nations., https://www.un.org/ar/actnow/home-energy
- 17- Pero, F., & Bertoldi, L. (2022). Exploiting the Value of Active and Multifunctional Façade Technology through the IoT and AI. Applied Sciences, 12(3), 1145. https://doi.org/10.3390/app12031145
- 18- Saudi Digital Library. (n.d.). https://dictionary.ksaa.gov.sa/
- 19- Verma, S. (2021). Responsive to Adaptive The shifting trends in Architecture. Arch2O. Retrieved from https://www.arch2o.com/responsive-to-adaptive-the-shifting-trends-in-architecture/
- 20- Geraedts, R., et al. (2021). Circular building adaptability and its determinants a literature review. International Journal of Building Pathology and Adaptation. https://doi.org/10.1108/IJBPA-11-2021-0150
- 21- Attia, S. (2020). Future trends and main concepts of adaptive facade systems. Energy Science & Engineering. Advance online publication. https://doi.org/10.1002/ese3.725
- 22- Poppinga, S., et al. (2017). Hygroscopic motions of fossil conifer cones. Scientific Reports, 7, 40302. https://doi.org/10.1038/srep40302
- 23- Carroll, J. M. (n.d.). What is human-computer interaction (HCI)? In Interaction-Design Foundation. Retrieved Month Day, Year, from https://www.interaction-design.org/literature/topics/human-computer-interaction
- 24- Sauda, E., Karduni, A., & Lanclos, D. (2024). Architecture in the Age of Human–Computer Interaction (1st ed.). https://doi.org/10.4324/9781003363392. URL:https://www.taylorfrancis.com/books/9781032425924
- 25- Australian Research Council. (2021, September 8). Internet of Things improving Australian lives. ARC. Retrieved [today's date],https://www.arc.gov.au/news-publications/media/making-difference-publication/internet-things-improving-australian-lives
- 26- AddOn Systems Pte Ltd. (2024, October 9). Smart Lighting vs. Traditional Lighting: What's the Difference? AddOn Systems. https://addonsys.net/blogs/smart-home/smart-lighting-vs.-traditional-lighting-what's-the-difference-
- 27- Enbuild. (2023). Is IoT monitoring key to improve building energy efficiency? Case study of a smart campus in Spain. Energy and Buildings, 285, 112882. https://doi.org/10.1016/j.enbuild.2023.112882
- 28- Loftness, V. (2014, November 24). The Internet of Anything: A Smartphone App That Lets You Control Your Office Environment.
- 29- O'Brien, W., Wagner, A., Schweiker, M., Mahdavi, A., Day, J., Kjærgaard, M. B., Carlucci, S., Dong, B., Tahmasebi, F., Yan, D., Hong, T., Gunay, H. B., Nagy, Z., Miller, C., & Berger, C. (2020). Introducing IEA EBC annex 79: Key challenges and opportunities in the field of occupant-centric building design and operation. Building and Environment, 178, Article 106738. https://doi.org/10.1016/j.buildenv.2020.106738
- 30- Hong, T., & Li, Q. (2021). Exploration of Symbolic Design Concepts and Practices of Smart Furniture [J]. Forest Products Industry, 58(06), 95-97
- 31- Yu, Mingji & Lian, Jingjin & Liang, Zhan. (2024). Integrated Mechanical and Electronic Design and Comfort Optimization in Smart Furniture. Journal of Computer Technology and Electronic Research.
- 32- ArchDaily. (2024). Mario Cucinella Architects Celebrates Italian Expertise at Expo 2025 Osaka. Link:

https://www.archdaily.com/1031271/the-italian-pavilion-expo-2025-osaka-mario-cucinella-architectsplus-yoshiki-matsuda-architects?ad source=search&ad medium=projects tab

33- Badie Architects. (2025, June 29). The V Penthouse / Badie Architects. ArchDaily. Retrieved June 29, 2025, https://www.archdaily.com/1031412/the-v-penthouse-badie-architects

Rana Hisham Mohamed (2025), Adaptive Interior Design as an Intelligent Environmental **CITATION** Mediator Between Users and Changing Climate, International Design Journal, Vol. 15 No. 6, (November 2025) pp 131-144