Improving the thermal comfort properties of bamboo and bamboo blended fabrics for sports head scarves

K. Nassar

Department of Weaving and Spinning, Faculty of Applied Arts, Helwan University, Egypt Department of Textile Engineering, Faculty of Applied Arts, Badr University, Egypt khaled.mansour@gmail.com (Corresponding author)

Nahla M

Department of Weaving and Spinning, Faculty of Applied Arts, Helwan University, Egypt; **Abou-Taleb EM**

Department of Weaving and Spinning, Faculty of Applied Arts, Helwan University, Egypt;

Abstract:	Keywords
In this work, the thermal comfort properties of bamboo & bamboo blended	Thermal Comfort,
women's head scarves that are worn by females during sports events	Thermal
activities have been investigated. Comfort can be described by the	Conductivity,
physically relaxed state that is devoid from any pain. Single jersey knitted	Bamboo,
fabrics samples were produced with the same loop-length from three	Microfiber,
different types of fibres. The three fibres types were bamboo, cotton,	Head Scarves
polyester microfiber and their blends with various feeder arrangements.	
Linear density of bamboo and cotton yarns were 30/1 Ne. Polyester	
microfiber yarns with Liner density 150 D/144f were used. Results showed	
that even with same blend ratios, the arrangement of the yarns inside the	
fabric has an effect on fabric thickness. Moreover, bamboo fabrics scored	
the lowest weight due to their low specific density, which greatly enhances	
the comfort levels compared to the other samples. Results obtained show	
that, Bamboo samples have excelled properties in term of thermal	

Paper History:

conductivity and Qmax tests compared to other samples.

Paper received 10th July 2020, Accepted 24th August 2020, Published 1st of October 2020