نادي, فاطمة, حمدي, عمر. (2025). دور تقييم قابلية التضرر في التخطيط الحضري للتخفيف من مخاطر الزلازل. مجلة التصميم الدولية, 15(3), 195-206. doi: 10.21608/idj.2025.360625.1271
فاطمة نادي; عمر حمدي. "دور تقييم قابلية التضرر في التخطيط الحضري للتخفيف من مخاطر الزلازل". مجلة التصميم الدولية, 15, 3, 2025, 195-206. doi: 10.21608/idj.2025.360625.1271
نادي, فاطمة, حمدي, عمر. (2025). 'دور تقييم قابلية التضرر في التخطيط الحضري للتخفيف من مخاطر الزلازل', مجلة التصميم الدولية, 15(3), pp. 195-206. doi: 10.21608/idj.2025.360625.1271
نادي, فاطمة, حمدي, عمر. دور تقييم قابلية التضرر في التخطيط الحضري للتخفيف من مخاطر الزلازل. مجلة التصميم الدولية, 2025; 15(3): 195-206. doi: 10.21608/idj.2025.360625.1271
دور تقييم قابلية التضرر في التخطيط الحضري للتخفيف من مخاطر الزلازل
قسم الهندسة المعمارية، كلية الهندسة، جامعة أسوان، أسوان، مصر
المستخلص
إن الكوارث الطبيعية تتزايد بوتيرة متسارعة مع تزايد معدلات التحضر. ومع استمرار توسع المدن، غالبًا بشكل غير مخطط له أو غير منضبط، يواجه كلٌّ من البنية التحتية والسكان مستويات متزايدة من التعرض للمخاطر الطبيعية. ويؤدي هذا النمو العشوائي إلى ضعف القدرة على مواجهة الصدمات، مما يزيد من تعقيد جهود الاستعداد للكوارث والاستجابة لها. وتتصدر الأحداث الزلزالية قائمة أكثر الكوارث تدميرًا، حيث ينشأ خطر الكوارث من تقاطع وتيرة المخاطر وشدتها وتأثيرها مع عدد السكان والأصول المعرضة للخطر، فضلاً عن درجة قابليتها للتضرر. وعلى الرغم من أن قابلية التضرر تشكل عنصرًا جوهريًا في تقييم المخاطر، فإن الأبحاث غالبًا ما تركز على تقييم "الخطر" و"التعرض" أكثر من دراسات "قابلية التضرر" نظرًا لصعوبة تحديدها وقياسها. تهدف هذه الدراسة إلى إبراز أهمية تقييم قابلية التضرر في التخطيط الحضري للتخفيف من المخاطر الزلزالية. وتبدأ بمراجعة نظرية لمفهوم تقييم المخاطر ومكوناته الأساسية، ثم تستعرض الأدبيات المتعلقة بتقييم قابلية التضرر الزلزالي بهدف تحديد العوامل الرئيسية التي تؤدي إلى زيادته. وتشير النتائج إلى أن تقييم قابلية التضرر يمثل عنصرًا حاسمًا في تقييم المخاطر، إذ يتطلب نهجًا متعدد الأبعاد يشمل العوامل الفيزيائية والاجتماعية والاقتصادية والبيئية المبنية، والتي تؤثر جميعها على قابلية تضرر المناطق الحضرية بالمخاطر. وتعزى تعقيدات قابلية التضرر إلى التفاعل الديناميكي بين هذه العوامل، والذي يختلف بشكل كبير بين المجتمعات المختلفة. إن الفهم العميق للعوامل التي تزيد من قابلية التضرر بالزلازل ودراسة تفاعلاتها يمكن أن يسهم في توجيه الجهود نحو تعزيز القدرة على الصمود، مما يساهم في تحسين مرونة المدن والمناطق الحضرية
1- 2009 UNISDR terminology on disaster risk reduction | UNDRR. (n.d.). Retrieved January 28, 2025, from https://www.undrr.org/publication/2009-unisdr-terminology-disaster-risk-reduction
2- Afsari, R., Nadizadeh Shorabeh, S., Bakhshi Lomer, A. R., Homaee, M., & Arsanjani, J. J. (2023a). Using Artificial Neural Networks to Assess Earthquake Vulnerability in Urban Blocks of Tehran. Remote Sensing, 15(5), 1248. https://doi.org/10.3390/rs15051248
3- Afsari, R., Nadizadeh Shorabeh, S., Bakhshi Lomer, A. R., Homaee, M., & Arsanjani, J. J. (2023b). Using artificial neural networks to assess earthquake vulnerability in urban blocks of Tehran. Remote Sensing, 15(5), 1248.
4- Alam, M. S., & Haque, S. M. (2022). Multi-dimensional earthquake vulnerability assessment of residential neighborhoods of Mymensingh City, Bangladesh: A spatial multi-criteria analysis based approach. Journal of Urban Management, 11(1), 37–58.
5- Alizadeh, M., Ngah, I., Hashim, M., Pradhan, B., & Pour, A. B. (2018). A hybrid analytic network process and artificial neural network (ANP-ANN) model for urban earthquake vulnerability assessment. Remote Sensing, 10(6), 975.
6- Alizadeh, M., Zabihi, H., Rezaie, F., Asadzadeh, A., Wolf, I. D., Langat, P. K., Khosravi, I., Beiranvand Pour, A., Mohammad Nataj, M., & Pradhan, B. (2021). Earthquake vulnerability assessment for urban areas using an ann and hybrid swot-qspm model. Remote Sensing, 13(22), 4519.
7- Centre for Research on the Epidemiology of Disasters (CRED), U. C. de L. (UCLouvain), U. S. A. for I. D. (USAID). (2023). 2022 Disasters in numbers | PreventionWeb. https://www.preventionweb.net/publication/2022-disasters-numbers
8- Columbro, C., Eudave, R. R., Ferreira, T. M., Lourenço, P. B., & Fabbrocino, G. (2022). On the use of web mapping platforms to support the seismic vulnerability assessment of old urban areas. Remote Sensing, 14(6), 1424.
10- Diaz-Sarachaga, J. M., & Jato-Espino, D. (2020). Analysis of vulnerability assessment frameworks and methodologies in urban areas. Natural Hazards, 100(1), 437–457. https://doi.org/10.1007/s11069-019-03805-y
11- Dilley, M., & Boudreau, T. E. (2001). Coming to terms with vulnerability: a critique of the food security definition. Food Policy, 26(3), 229–247.
12- Disaster Classification System | EM-DAT Documentation. (n.d.). Retrieved January 29, 2025, from https://doc.emdat.be/docs/data-structure-and-content/disaster-classification-system/
13- Duzgun, H. S. B., Yucemen, M. S., Kalaycioglu, H. S., Celik, K., Kemec, S., Ertugay, K., & Deniz, A. (2011). An integrated earthquake vulnerability assessment framework for urban areas. Natural Hazards, 59, 917–947.
14- Eastman, J. R. (1999). Multi-criteria evaluation and GIS. Geographical Information Systems, 1(1), 493–502.
15- EM-DAT. (2023). EM-DAT - The international disaster database. https://www.emdat.be/
16- FEMA. (n.d.). Natural Hazards | National Risk Index. Retrieved July 13, 2023, from https://hazards.fema.gov/nri/natural-hazards
17- FEMA, P. (2015). 154: Rapid visual screening of buildings for potential seismic hazards: a handbook. Federal Emergency Management Agency Report, FEMA. P, 154.
18- Fordham, M., Lovekamp, W. E., Thomas, D. S. K., & Phillips, B. D. (2013). Understanding social vulnerability. Social Vulnerability to Disasters, 2, 1–29.
19- Freire, S., & Aubrecht, C. (2012). Integrating population dynamics into mapping human exposure to seismic hazard. Natural Hazards and Earth System Sciences, 12(11), 3533–3543.
20- Frigerio, I., Ventura, S., Strigaro, D., Mattavelli, M., De Amicis, M., Mugnano, S., & Boffi, M. (2016). A GIS-based approach to identify the spatial variability of social vulnerability to seismic hazard in Italy. Applied Geography, 74, 12–22. https://doi.org/10.1016/J.APGEOG.2016.06.014
21- Garatwa, W., & Bollin, C. (2002). Disaster risk management: Working concept. In Disaster risk management: Working concept (p. 48).
22- Global assessment report on disaster risk reduction 2019 | UNDRR. (n.d.). Retrieved January 29, 2025, from https://www.undrr.org/publication/global-assessment-report-disaster-risk-reduction-2019
23- Grünthal, G., & Schwarz, J. (n.d.). European Macroseismic Scale 1998 EMS-98 Editor.
24- Hamdy, O., & Alsonny, Z. (2022). Assessing the Impacts of Land Use Diversity on Urban Heat Island in New Cities in Egypt, Tiba City as a Case Study. International Design Journal, 12(3), 93–103. https://doi.org/10.21608/idj.2022.128425.1040
25- Hamdy, O., Gaber, H., Abdalzaher, M. S., & Elhadidy, M. (2022). Identifying exposure of urban area to certain seismic hazard using machine learning and GIS: A case study of greater Cairo. Sustainability, 14(17), 10722.
26- Hamdy, O., Zhao, S., A. Salheen, M., & Eid, Y. (2016). Identifying the Risk Areas and Urban Growth by ArcGIS-Tools. Geosciences, 6(4), 47. https://doi.org/10.3390/geosciences6040047
27- Hanberry, B. B. (2023). Urban Land Expansion and Decreased Urban Sprawl at Global, National, and City Scales during 2000 to 2020. Ecosystem Health and Sustainability, 9, 0074. https://doi.org/10.34133/ehs.0074
28- Hardoy, J., & Satterthwaite, D. (2023). Urban Growth as a Problem. In The Earthscan Reader in Sustainable Development (pp. 197–199). Routledge. https://doi.org/10.4324/9781003403432-28
29- Harrison, C. G., & Williams, P. R. (2016). A systems approach to natural disaster resilience. Simulation Modelling Practice and Theory, 65, 11–31. https://doi.org/https://doi.org/10.1016/j.simpat.2016.02.008
30- Hosseinpour, V., Saeidi, A., Nollet, M.-J., & Nastev, M. (2021). Seismic loss estimation software: A comprehensive review of risk assessment steps, software development and limitations. Engineering Structures, 232, 111866. https://doi.org/https://doi.org/10.1016/j.engstruct.2021.111866
31- Hua, W., Ye, J., & Ye, J. (2023). Resilience assessment and seismic risk assessment of reticulated shell structures considering multiple uncertainties. Structures, 55, 1584–1594. https://doi.org/10.1016/J.ISTRUC.2023.06.129
32- Kassem, M. M., Mohamed Nazri, F., & Noroozinejad Farsangi, E. (2020). The seismic vulnerability assessment methodologies: A state-of-the-art review. Ain Shams Engineering Journal, 11(4), 849–864. https://doi.org/10.1016/J.ASEJ.2020.04.001
33- Labaka, L., Maraña, P., Giménez, R., & Hernantes, J. (2019). Defining the roadmap towards city resilience. Technological Forecasting and Social Change, 146, 281–296. https://doi.org/https://doi.org/10.1016/j.techfore.2019.05.019
34- Lee, S., Yoo, C., Im, J., Cho, D., Lee, Y., & Bae, D. (2023). An innovative method to investigate the altering urban thermal environment by dynamic land cover change: A case study of Suwon, Republic of Korea. EGU General Assembly Conference Abstracts, EGU-13594.
35- Li, S.-Q. (2023). Empirical resilience and vulnerability model of regional group structure considering optimized macroseismic intensity measure. Soil Dynamics and Earthquake Engineering, 164, 107630. https://doi.org/https://doi.org/10.1016/j.soildyn.2022.107630
36- Li, X., & Gong, P. (2016). Urban growth models: progress and perspective. Science Bulletin, 61(21), 1637–1650. https://doi.org/https://doi.org/10.1007/s11434-016-1111-1
37- Munich Re. (2023). Climate change and La Niña driving losses: the natural disaster figures for 2022 | Munich Re. https://www.munichre.com/en/company/media-relations/media-information-and-corporate-news/media-information/2023/natural-disaster-figures-2022.html
38- Nations, U. (2014). World urbanization prospects: The 2014 revision, highlights. department of economic and social affairs. Population Division, United Nations, 32, 1–517. https://population.un.org/wup/publications/files/wup2014-report.pdf
39- Nations, U. (2018). The World’s Cities in 2018: Data Booklet. https://doi.org/10.18356/C93F4DC6-EN
40- Noby, M., Elattar, M. E., & Hamdy, O. (2023). A Machine Learning Model to Predict Urban Sprawl Using Official Land-use Data. Urbanism. Arhitectura. Constructii, 14(3), 249–258.
41- Nugroho, F., & Al-Sanjary, O. I. (2018). A Review of Simulation Urban Growth Model. International Journal of Engineering & Technology, 7(11), 17–23. https://doi.org/10.14419/ijet.v7i4.11.20681
42- Ozegbe, K. C. (2022). Earthquake Response, Vulnerability Assessment, and Rehabilitation of Water Conveyance Tunnels in High Seismic Hazard Regions: Whitewater Tunnel No. 2 Seismic Resilience Study. Lifelines 2022: 1971 San Fernando Earthquake and Lifeline Infrastructure - Selected Papers from the Lifelines 2022 Conference, 1, 356–368. https://doi.org/10.1061/9780784484432.032
43- Peril Classification and Hazard Glossary. (n.d.). Retrieved January 29, 2025, from https://council.science/wp-content/uploads/2019/12/Peril-Classification-and-Hazard-Glossary-1.pdf
44- SADC DRM IMS | Risk Components | SADC - DRM IMS. (n.d.). Retrieved January 29, 2025, from https://drmims.sadc.int/en/sendai-framework/risk-components
45- Samuel, M. A., Xiong, E., Haris, M., Lekeufack, B. C., Xie, Y., & Han, Y. (2024). Assessing Seismic Vulnerability Methods for RC-Frame Buildings Pre-and Post-Earthquake. Sustainability, 16(23), 10392.
46- Schneiderbauer, S., & Ehrlich, D. (2004). Risk, hazard and people’s vulnerability to natural hazards. A Review of Definitions, Concepts and Data. European Commission Joint Research Centre. EUR, 21410, 40.
47- Silva, V., Crowley, H., Varum, H., Pinho, R., & Sousa, R. (2014). Evaluation of analytical methodologies used to derive vulnerability functions. Earthquake Engineering & Structural Dynamics, 43(2), 181–204.
48- Social Vulnerability Index | Place and Health - Geospatial Research, Analysis, and Services Program (GRASP) | ATSDR. (n.d.). Retrieved January 24, 2025, from https://www.atsdr.cdc.gov/place-health/php/svi/index.html
51- UNIDSR. (2017). Disaster Resilience Scorecard for Cities. Preliminary Level Assessment. United Nations Office for Disaster Reduction Geneva.
52- Van Westen, C. J. (2013). Remote sensing and GIS for natural hazards assessment and disaster risk management. Treatise on Geomorphology, 3(15), 259–298.
53- Waly, N. M., Ayad, H. M., & Saadallah, D. M. (2021). Assessment of spatiotemporal patterns of social vulnerability: A tool to resilient urban development Alexandria, Egypt. Ain Shams Engineering Journal, 12(1), 1059–1072.
54- Wang, Y., Sun, Y., Cao, X., Wang, Y., Zhang, W., & Cheng, X. (2023). A review of regional and Global scale Land Use/Land Cover (LULC) mapping products generated from satellite remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 206, 311–334. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2023.11.014
55- Ward, P. J., Blauhut, V., Bloemendaal, N., Daniell, J. E., de Ruiter, M. C., Duncan, M. J., Emberson, R., Jenkins, S. F., Kirschbaum, D., & Kunz, M. (2020). Natural hazard risk assessments at the global scale. Natural Hazards and Earth System Sciences, 20(4), 1069–1096.
56- What is remote sensing and what is it used for? | U.S. Geological Survey. (n.d.). Retrieved January 26, 2025, from https://www.usgs.gov/faqs/what-remote-sensing-and-what-it-used
57- Yong, C., Qi-fu, C., & Ling, C. (2001). Vulnerability Analysis in Earthquake Loss Estimate. Natural Hazards, 23(2), 349–364. https://doi.org/10.1023/A:1011181803564
Ziraoui, A., Kissi, B., Aaya, H., & Azdine, I. (2023). The State of the Art on Seismic Protection Technologies for Structures: A Review. International Conference on Advanced Materials for Sustainable Energy and Engineering, 68–74.